library.

research library & additional educational materials.

  • 1

    Liu, Y., Cai, J., & Zhang, F. (2021). Influence of goat colostrum and mature milk on intestinal microbiota. Journal of Functional Foods, 86, 104704. https://doi.org/10.1016/j.jff.2021.104704

  • 2

    Schroeder, H. W., & Cavacini, L. (2010). Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S41–S52. https://doi.org/10.1016/j.jaci.2009.09.046

  • 3

    OpenStax. (2016). Microbiology. Chapter 17: Adaptive Immunity.

  • 4

    Sánchez-Macías, D., Moreno-Indias, I., Castro, N., Morales-delaNuez, A., & Argüello, A. (2014). From goat colostrum to milk: Physical, chemical, and immune evolution from partum to 90 days postpartum. Journal of Dairy Science, 97(1), 10–16. https://pubmed.ncbi.nlm.nih.gov/24183682/

  • 5

    Legrand, D. (2016). Overview of lactoferrin as a natural immune modulator. Journal of Pediatrics, 173(Suppl), S10–S15. https://doi.org/10.1016/j.jpeds.2016.02.071

  • 6

    Poonia, A., & Shiva. (2022). Bioactive compounds, nutritional profile and health benefits of colostrum: A review. Food Production, Processing and Nutrition, 4, Article 26. https://doi.org/10.1186/s43014-022-00104-1

  • 7

    Stoycheva, S., & Mondeshka, L. (2024). Physicochemical profile of colostrum from Bulgarian White Dairy breed goats – first day after birth. Bulgarian Chemical Communications, 56(D1), 163–166.

  • 8

    Hall, J. E., & Guyton, A. C. (2021). Guyton and Hall Textbook of Medical Physiology (14th ed.). Philadelphia, PA: Elsevier.

  • 9

    Polidori, P., Rapaccetti, R., Klimanova, Y., Zhang, J.-J., Santini, G., & Vincenzetti, S. (2022). Nutritional parameters in colostrum of different mammalian species. Beverages, 8(3), 54. https://doi.org/10.3390/beverages8030054

  • 10

    Elin, R. J. (2010). Magnesium: The fifth but forgotten electrolyte. American Journal of Clinical Pathology, 134(2), 153–156.

  • 11

    Övet, C. (2023). Cytokines and growth factors in goat colostrum: A short review. Bahri Dağdaş Animal Research, 12(1), 87–95.

  • 12

    Massagué, J. (2012). TGFβ signalling in context. Nature Reviews Molecular Cell Biology, 13(10), 616–630. https://doi.org/10.1038/nrm3434

  • 13

    Florini, J. R., Ewton, D. Z., & Coolican, S. A. (1996). Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Reviews, 17(5), 481–517. https://doi.org/10.1210/edrv-17-5-481

  • 14

    Werner, S., & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83(3), 835–870. https://doi.org/10.1152/physrev.2003.83.3.835

  • 15

    Mondeshka, L., Dimitrova, T., Markov, N., Hristov, M., Stoycheva, S., & Bancheva, T. (2022). Goat colostrum – composition and impact. Scientific Papers: Series D. Animal Science, 65(1), 432–436.

  • 16

    Mora, J. R., Iwata, M., & von Andrian, U. H. (2008). Vitamin effects on the immune system: Vitamins A and D take centre stage. Nature Reviews Immunology, 8(9), 685–698. https://doi.org/10.1038/nri2378

  • 17

    Hodulová, L., Vorlová, L., & Kostrhounová, R. (2014). Dynamical changes of basic chemical indicators and significant lipophilic vitamins in caprine colostrum. Acta Veterinaria Brno, 83(Suppl. 10), S15–S19. https://doi.org/10.2754/avb201483S10S15

  • 18

    Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L., & Carmeliet, G. (2016). Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews, 96(1), 365–408. https://doi.org/10.1152/physrev.00014.2015

  • 19

    Medina, J., & Gupta, V. (2025). Vitamin E. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing. Available from https://www.ncbi.nlm.nih.gov/books/NBK557737/

  • 20

    Collins, R. A., Harper, A. E., Schreiber, M., & Elvehjem, C. A. (1951). The folic acid and vitamin B12 content of the milk of various species. Journal of Nutrition, 43(2), 313–321. https://doi.org/10.1093/jn/43.2.313

  • 21

    Hanna, M., Jaqua, E., Nguyen, V., & Clay, J. (2022). B vitamins: Functions and uses in medicine. The Permanente Journal, 26(2), 89–97. https://doi.org/10.7812/TPP/21.204

  • 22

    Muñoz-Salinas, F., Andrade-Montemayor, H. M., De la Torre-Carbot, K., Duarte-Vázquez, M. Á., & Silva-Jarquin, J. C. (2022). Comparative analysis of the protein composition of goat milk from French Alpine, Nubian, and Creole breeds and Holstein Friesian cow milk: Implications for early infant nutrition. Animals, 12(17), 2236. https://doi.org/10.3390/ani12172236

  • 23

    Soloshenko, K. I., Lych, I. V., Voloshyna, I. M., & Shkotova, L. V. (2020). Polyfunctional properties of goat colostrum proteins and their use. Biopolymers and Cell, 36(3), 197–209. https://doi.org/10.7124/bc.000A2B

  • 24

    Jung, T.-H., Hwang, H.-J., Yun, S.-S., Lee, W.-J., Kim, J.-W., Ahn, J.-Y., Jeon, W.-M., & Han, K.-S. (2017). Hypoallergenic and physicochemical properties of the A2 β-casein fraction of goat milk. Korean Journal for Food Science of Animal Resources, 37(6), 940–947. https://doi.org/10.5851/kosfa.2017.37.6.940

  • 25

    Brooke-Taylor, S., Dwyer, K., Woodford, K., & Kost, N. (2017). Systematic review of the gastrointestinal effects of A1 compared with A2 β-casein. Advances in Nutrition, 8(5), 739–748. https://doi.org/10.3945/an.116.013953

  • 26

    Bernacka, H. (2011). Health-promoting properties of goat milk. Medycyna Weterynaryjna, 67(8), 507–511.

  • 27

    Van Hul, M., Cani, P. D., Petitfils, C., De Vos, W. M., Tilg, H., & El-Omar, E. M. (2024). What defines a healthy gut microbiome? Gut, 73(11), e333378. https://doi.org/10.1136/gutjnl-2024-333378

  • 28

    Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014

For educational purposes only.